Maximal Clades in Random Binary Search Trees

نویسنده

  • Svante Janson
چکیده

We study maximal clades in random phylogenetic trees with the Yule–Harding model or, equivalently, in binary search trees. We use probabilistic methods to reprove and extend earlier results on moment asymptotics and asymptotic normality. In particular, we give an explanation of the curious phenomenon observed by Drmota, Fuchs and Lee (2014) that asymptotic normality holds, but one should normalize using half the variance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Profile and Height of Random Binary Search Trees

The purpose of this article is to survey recent results on distributional properties of random binary search trees. In particular we consider the profile and the height.

متن کامل

P´olya Urn Models and Connections to Random Trees: A Review

This paper reviews P´olya urn models and their connection to random trees. Basic results are presented, together with proofs that underly the historical evolution of the accompanying thought process. Extensions and generalizations are given according to chronology: • P´olya-Eggenberger’s urn • Bernard Friedman’s urn • Generalized P´olya urns • Extended urn schemes • Invertible urn schemes ...

متن کامل

Fringe trees, Crump–Mode–Jagers branching processes and m-ary search trees

This survey studies asymptotics of random fringe trees and extended fringe trees in random trees that can be constructed as family trees of a Crump–Mode–Jagers branching process, stopped at a suitable time. This includes random recursive trees, preferential attachment trees, fragmentation trees, binary search trees and (more generally) m-ary search trees, as well as some other classes of random...

متن کامل

Extremal Weighted Path Lengths in Random Binary Search Trees

We consider weighted path lengths to the extremal leaves in a random binary search tree. When linearly scaled, the weighted path length to the minimal label has Dickman’s infinitely divisible distribution as a limit. By contrast, the weighted path length to the maximal label needs to be centered and scaled to converge to a standard normal variate in distribution. The exercise shows that path le...

متن کامل

On Random Cartesian Trees

Cartesian trees are binary search trees in which the nodes exhibit the heap property according to a second (priority) key. lithe search key and the priority key are independent, and the tree is built . based on n independent copies, Cartesian trees basically behave like ordinary random binary search trees . In this article, we analyze the expected behavior when the keys are dependent : in most ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2015